Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
4.
An. sist. sanit. Navar ; (Monografía n 8): 105-122, Jun 23, 2023. tab
Artigo em Espanhol | IBECS | ID: ibc-222468

RESUMO

El diagnóstico microbiológico es esencial en el conocimiento y manejo de las enfermedadesinfecciosas, tanto en los procesos habituales de la práctica clínica como en la aparición denuevos microorganismos, como en los próximos que puedan aparecer con el cambio climáticoy la nueva situación de los vectores que transmiten enfermedades en nuestro medio. El 11 de marzo 2020 la Organización Mundial de la Salud declaró la alerta por pandemiamundial por SARS-CoV-2 que se descubrió y se aisló por primera vez en Wuhan, China, en unbrote de neumonía de etiología desconocida vinculada a un mercado. Es una infección quetiene un origen zoonótico, se transmitió de un huésped animal a uno humano. Actualmente nose conoce de forma clara de dónde proviene el SARS-CoV-2. A principios de enero de 2020, científicos chinos anunciaron que habían aislado y secuenciadocompletamente el virus y lo publicaron; esto permitió disponer de técnicas de PCR para realizar eldiagnóstico de la infección por SARS Cov2 en todo el mundo. El objetivo de este trabajo es revisarel papel llevado a cabo desde el Servicio de Microbiología Clínica del Hospital Universitario deNavarra en la pandemia de COVID-19 y, en concreto, en nuestra comunidad, Navarra. Más de dos años después y, sin dejar de lado el profundo impacto sanitario, familiar y socialque ha tenido, debemos quedarnos con lo positivo del aprendizaje profesional y personaladquirido para aplicarlo en nuestro día a día, así como para las futuras pandemias que vengan.(AU)


Assuntos
Humanos , Técnicas e Procedimentos Diagnósticos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/microbiologia , Testes Diagnósticos de Rotina , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Doenças Transmissíveis/microbiologia , Atenção à Saúde , Saúde Pública , Infecções por Coronavirus/diagnóstico
5.
J Biomed Sci ; 27(1): 85, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762680

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a Gram-negative pathogen that frequently causes life-threatening infections in immunocompromised patients. We previously showed that subinhibitory concentrations of short synthetic peptides permeabilize P. aeruginosa and enhance the lethal action of co-administered antibiotics. METHODS: Long-term permeabilization caused by exposure of multidrug-resistant P. aeruginosa strains to peptide P4-9 was investigated by measuring the uptake of several antibiotics and fluorescent probes and by using confocal imaging and atomic force microscopy. RESULTS: We demonstrated that P4-9, a 13-amino acid peptide, induces a growth delay (i.e. post-antibiotic effect) of 1.3 h on a multidrug-resistant P. aeruginosa clinical isolate. Remarkably, when an independently P4-9-treated culture was allowed to grow in the absence of the peptide, cells remained sensitive to subinhibitory concentrations of antibiotics such as ceftazidime, fosfomycin and erythromycin for at least 2 h. We designated this persistent sensitization to antibiotics occurring in the absence of the sensitizing agent as Post-Antibiotic Effect associated Permeabilization (PAEP). Using atomic force microscopy, we showed that exposure to P4-9 induces profound alterations on the bacterial surface and that treated cells need at least 2 h of growth to repair those lesions. During PAEP, P. aeruginosa mutants overexpressing either the efflux pump MexAB-OprM system or the AmpC ß-lactamase were rendered sensitive to antibiotics that are known substrates of those mechanisms of resistance. Finally, we showed for the first time that the descendants of bacteria surviving exposure to a membrane disturbing peptide retain a significant level of permeability to hydrophobic compounds, including propidium iodide, even after 20 h of growth in the absence of the peptide. CONCLUSIONS: The phenomenon of long-term sensitization to antibiotics shown here may have important therapeutic implications for a combined peptide-antibiotic treatment because the peptide would not need to be present to exert its antibiotic enhancing activity as long as the target organism retains sensitization to the antibiotic.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Pseudomonas aeruginosa/efeitos dos fármacos
6.
Curr Drug Targets ; 13(9): 1121-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22664072

RESUMO

The first barrier that an antimicrobial agent must overcome when interacting with its target is the microbial cell wall. In the case of Gram-negative bacteria, additional to the cytoplasmic membrane and the peptidoglycan layer, an outer membrane (OM) is the outermost barrier. The OM has an asymmetric distribution of the lipids with phospholipids and lipopolysaccharide (LPS) located in the inner and outer leaflets, respectively. In contrast, Gram-positive bacteria lack OM and possess a much thicker peptidoglycan layer compared to their Gram-negative counterparts. An additional class of amphiphiles exists in Gram-positives, the lipoteichoic acids (LTA), which may represent important structural components. These long molecules cross-bridge the entire cell envelope with their lipid component inserting into the outer leaflet of the cytoplasmic membrane and the teichoic acid portion penetrating into the peptidoglycan layer. Furthermore, both classes of bacteria have other important amphiphiles, such as lipoproteins, whose importance has become evident only recently. It is not known yet whether any of these amphiphilic components are able to stimulate the immune system under physiological conditions as constituents of intact bacteria. However, all of them have a very high pro-inflammatory activity when released from the cell. Such a release may take place through the interaction with the immune system, or with antibiotics (particularly with those targeting cell wall components), or simply by the bacterial division. Therefore, a given antimicrobial agent must ideally have a double character, namely, it must overcome the bacterial cell wall barrier, without inducing the liberation of the pro-inflammatory amphiphiles. Here, new data are presented which describe the development and use of membrane-active antimicrobial agents, in particular antimicrobial peptides (AMPs) and lipopolyamines. In this way, essential progress was achieved, in particular with respect to the inhibition of deleterious consequences of bacterial infections such as severe sepsis and septic shock.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/química , Parede Celular/química , Poliaminas/farmacologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular
7.
Biophys J ; 100(11): 2652-61, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21641310

RESUMO

Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fenômenos Biofísicos , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Materiais Biomiméticos/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citocinas/metabolismo , Feminino , Caranguejos Ferradura/efeitos dos fármacos , Caranguejos Ferradura/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Bicamadas Lipídicas/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/toxicidade , Camundongos , Fosfolipídeos/metabolismo , Ligação Proteica
8.
Protein Pept Lett ; 17(11): 1328-33, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20673224

RESUMO

We have synthesized a series of short peptides (17 to 20 amino acids), originally derived from Limulus anti-lipopolysaccharide factor LALF, which were primarily designed to act as antimicrobial agents as well as neutralizers of bacterial endotoxin (lipopolysaccharide, LPS), Here, two selected peptides, a 17- and a 19-mer, were characterized physicochemically and in biological test systems. The secondary structure of the peptides indicates essentially a ß-sheet including antiparallel strands, the latter being reduced when the peptides bind to LPS. A very strong exothermic binding due to attractive Coulomb interactions governs the LPS-peptide reaction, which additionally leads to a fluidization of the acyl chains of LPS. A comparison of the interaction of the peptide with negatively charged phosphatidylserine shows in contrast a rigidification of the acyl chains of the lipid. Finally, the biological assays reveal a diverging behaviour of the two peptides, with higher antibacterial activity of the 17-mer, but a much higher activity of the 19-mer in its ability to inhibit the LPS-induced cytokine production in human mononuclear cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Hormônios de Invertebrado/química , Lipídeos/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes , Calorimetria , Células Cultivadas , Humanos , Hormônios de Invertebrado/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Dados de Sequência Molecular , Transição de Fase , Estrutura Secundária de Proteína , Fator de Necrose Tumoral alfa/metabolismo
9.
Antimicrob Agents Chemother ; 54(9): 3817-24, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20606063

RESUMO

Systemic bacterial infections are associated with high mortality. The access of bacteria or constituents thereof to systemic circulation induces the massive release of immunomodulatory mediators, ultimately causing tissue hypoperfusion and multiple-organ failure despite adequate antibiotic treatment. Lipid A, the "endotoxic principle" of bacterial lipopolysaccharide (LPS), is one of the major bacterial immunostimuli. Here we demonstrate the biological efficacy of rationally designed new synthetic antilipopolysaccharide peptides (SALPs) based on the Limulus anti-LPS factor for systemic application. We show efficient inhibition of LPS-induced cytokine release and protection from lethal septic shock in vivo, whereas cytotoxicity was not observed under physiologically relevant conditions and concentrations. The molecular mechanism of LPS neutralization was elucidated by biophysical techniques. The lipid A part of LPS is converted from its "endotoxic conformation," the cubic aggregate structure, into an inactive multilamellar structure, and the binding affinity of the peptide to LPS exceeds those of known LPS-binding proteins, such as LPS-binding protein (LBP). Our results thus delineate a novel therapeutic strategy for the clinical management of patients with septic shock.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Choque Séptico/prevenção & controle , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Calorimetria , Células Cultivadas , Citocinas/metabolismo , Feminino , Hemólise/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/química , Choque Séptico/tratamento farmacológico , Choque Séptico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...